MAS S60: PyTorch & Huggingface Tutorial
~ 7" Before class:
Register for an Huggingface & Wandb Account
Open Colabs below:
Pytorch: tinyurl.com/s60torch
Huggingface: tinyurl.com/s60huf
Optional: View Slides at s60.dd.works

TITITIT TIPS

http://tinyurl.com/s60torch
http://tinyurl.com/s60huf
http://s60.dd.works

Huggingface Tutorial

“Huggingface” is a set of multiple packages
transformers: Provides API to initialize large pretrained models
datasets: Provides easy way to download datasets

Not from Huggingface but often used together
bitsandbytes: Provides functions to quantize large models
flash-attn: Allows the model to run faster with less memory

Some terms to keep in mind
LoRA: Adapter to train large models with less memory
Bfloat16: Robust half precision representation often used to save
memory

- - .. .1.1
U

p_
' : .
M
L
Ay
\u
e .
1 1» -
| i, —
‘ > \' AR - b
‘ \'f_\i.“ %
ol &
i @/ ml community

How to Al (Almost) Anything
Debugging Checklist

Special thanks to Andrej Karpathy and Pierce Freeman

mit _
media
lab

59 MITEECS

LN

https://karpathy.github.io/2019/04/25/recipe/
https://freeman.vc/notes/debugging-tips-for-neural-network-training

Why?

* Neural nets can fail silently — unlike regular software bugs
e Requires a structured process to avoid hidden errors

* Goals: Build confidence in your setup and achieve reliable
results

See Ali Rahimi’s Test of Time Blog

THE #1 DATA SCIENTIST EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY MODEL'S TRAINING ™

HEY! GETBACK T
TO WORK!

2 ﬂ
Elal _TRA|N|NG!

N l(
OH. CARRYON. ¥

() W

7% ()
i

AN
VL. any

H

multisensory
intelligence

https://archives.argmin.net/2017/12/05/kitchen-sinks/

THIS 1S YOUR MACHINE LEARNING SYSTEM?

Some Observations

YUP! YoU POUR THE. DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLEERS ON THE OTFER SIDE.
WHAT IF THE ANSLERS ARE WRONG?)

e Neural net training is a leaky abstraction JUST STR THE PILE ONTIL
THEY SIART LOOKING RIGHT

o Not plug-and-play like typical software libraries

o Complexity must be understood to avoid failure

e Neural net training fails silently

o Logical errors, not syntactic ones

o Networks can train but yield suboptimal results

The Recipe

e Become one with the Data

e Set up end-to-end skeleton and get dumb baselines
e Overfit to diagnose errors

e Regularize for better generalization

e Tune hyperparameters

e Squeeze out final improvements

SHOULD | FOLLOW THE
S atA o

3 o \
i\.\‘f “ A s..};l‘
e ’,.,.r*"

Becoming one with the Data

e Spend hours reviewing data samples

e Check for duplicates, corrupt data, and label errors
o |dentify patterns, biases, and potential preprocessing steps

e Write code to filter/sort and visualize distributions

. NOT SURE IF BRILLIANT IDEA
Set up Skeleton + Baselines

e Start with a simple model (linear classifier or tiny ConvNet)

o Tips & Tricks
o Fix random seeds for reproducibility
o Simplify by disabling augmentation and complex features
o Verify loss at initialization

o Overfit on one batch to confirm correctness

Overfit

| | N THEBEST WAYTO
e Use asimple model to overfit on a very small training set S 3TV [] [

e Debug if you cannot reach a low error rate

e Tips:
o Visualize predictions and loss dynamics
o Ensure gradients affect only expected inputs

o Avoid premature optimization of architecture

Regularize for Generalization

e Add more real data — the best way to reduce overfitting
e Use data augmentation and pretraining
e Reduce input dimensions and model size

e Techniques: Dropout, weight decay, early stopping

AND WEPUT THE MOD

N o

A
»\\
’/

S
_}&L

'\::L
g
. 4 Y

1

EL'INPRODUCTION

e &

:

3

-

P -

v

WITHOUT TESTING'A ON VALIDATION SET

1], IIIIES NOT'SIMPLY
Tune for Hyperparameters ‘

S o

m;;ncmﬁfvrm?n_nnﬂmns

e Prefer random search over grid search
e Use Bayesian optimization tools when available

e Don’t overcomplicate — start with simple models

Squeeze Out the Juice

e Use model ensembles for a 2% performance boost
e Leave models training longer than expected

o Explore state-of-the-art architectures and papers

Conclusion

e Follow a structured approach: Data — Baselines — Overfit — Regularize —
Tune

e Be patient and meticulous
e Visualize everything, hypothesize, and validate

e Ready to achieve SOTA results

How to Design ML Models for New Data

- Look at the data first

- For simple, low dimensional data, start with simple
models (SVM, Random Forest, Shallow MLP/CNN)

- For vision/language data, try pretrained model

- Start simple, then add complexity. Simple ones can be
used as baselines.

Massachusetts Institute of Technology 14

How to Debug Your Model

- Look at the data first. Is the input data & label correct?
- Ensure no data leakage; Epoch 1161

Loss: 0.810

- Look at the outputs. Is model only predicting one label?
- Label imbalance: Data Augmentation; loss scaling

- Look at the training loss
- Loss is nan: Inspect weights and inputs for NaN values.
Make sure weights are initialized. LLM: Use bfloat16
instead of float16.
- Loss not changing: Model underfitting. Increase learning
rate; decrease weight decay; Add more complexity; Use
better optimizer™*. W

ILoss: 114514.810
|Epoch 1145/1145 [

* Personal tip: | recommend trying second order optimizers from packages like Heavyball

Massachusetts Institute of Technology 15

https://github.com/ClashLuke/HeavyBall

How to Debug Your Model (Continued)

- Look at Loss (Continued) \

- Loss highly varied/increasing: Decrease learning rate;
Gradient Clipping; Use better Optimizers

- Look at train vs val accuracy (or any other

metrics)
- Train >> Val: Model overfitting. More weight decay,

reduce model complexity, data augmentation, get ,

more data
- Train = Val = 100%: Check for data leakage

B
<]

Loss

Massachusetts Institute of Technology 16

