MAS S60: PyTorch & Huggingface Tutorial

Before class: Register for an Huggingface & Wandb Account Open Colabs below: Pytorch: tinyurl.com/s60torch Huggingface: tinyurl.com/s60huf **Optional: View Slides at s60.dd.works**

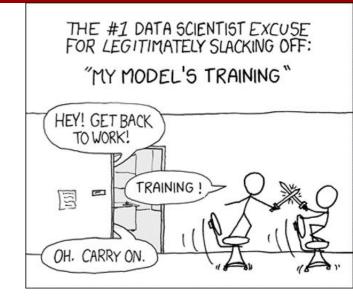
Huggingface Tutorial

- "Huggingface" is a set of multiple packages
 - transformers: Provides API to initialize large pretrained models
 - datasets: Provides easy way to download datasets
- Not from Huggingface but often used together
 - bitsandbytes: Provides functions to quantize large models
 - flash-attn: Allows the model to run faster with less memory
- Some terms to keep in mind
 - LoRA: Adapter to train large models with less memory
 - Bfloat16: Robust half precision representation often used to save memory

How to AI (Almost) Anything Debugging Checklist

Special thanks to Andrej Karpathy and Pierce Freeman

- Neural nets can fail silently unlike regular software bugs
- Requires a structured process to avoid hidden errors
- Goals: Build confidence in your setup and achieve reliable results



multisensory intelligence

Some Observations

- Neural net training is a leaky abstraction
 - Not plug-and-play like typical software libraries
 - Complexity must be understood to avoid failure

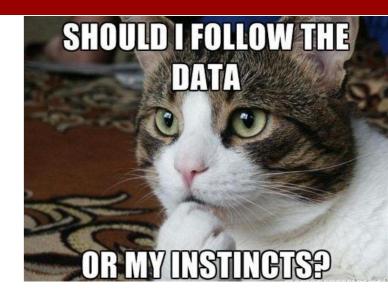
- Neural net training fails silently
 - Logical errors, not syntactic ones
 - Networks can train but yield suboptimal results

The Recipe

- Become one with the Data
- Set up end-to-end skeleton and get dumb baselines
- Overfit to diagnose errors
- Regularize for better generalization
- Tune hyperparameters
- Squeeze out final improvements

Becoming one with the Data

- Spend hours reviewing data samples
- Check for duplicates, corrupt data, and label errors
- Identify patterns, biases, and potential preprocessing steps
- Write code to filter/sort and visualize distributions



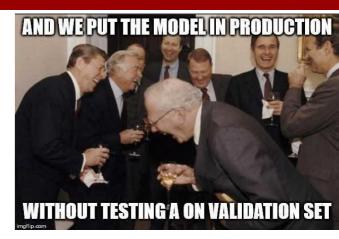
Set up Skeleton + Baselines

- Start with a simple model (linear classifier or tiny ConvNet)
- Tips & Tricks
 - Fix random seeds for reproducibility
 - Simplify by disabling augmentation and complex features
 - Verify loss at initialization
 - Overfit on one batch to confirm correctness

- Use a simple model to overfit on a very small training set
- Debug if you cannot reach a low error rate
- Tips:
 - Visualize predictions and loss dynamics
 - Ensure gradients affect only expected inputs
 - Avoid premature optimization of architecture

Regularize for Generalization

- Add more real data the best way to reduce overfitting
- Use data augmentation and pretraining
- Reduce input dimensions and model size
- Techniques: Dropout, weight decay, early stopping



Tune for Hyperparameters

- Prefer random search over grid search
- Use Bayesian optimization tools when available
- Don't overcomplicate start with simple models

Squeeze Out the Juice

- Use model ensembles for a 2% performance boost
- Leave models training longer than expected
- Explore state-of-the-art architectures and papers

Conclusion

- Follow a structured approach: Data \rightarrow Baselines \rightarrow Overfit \rightarrow Regularize \rightarrow Tune
- Be patient and meticulous
- Visualize everything, hypothesize, and validate
- Ready to achieve SOTA results

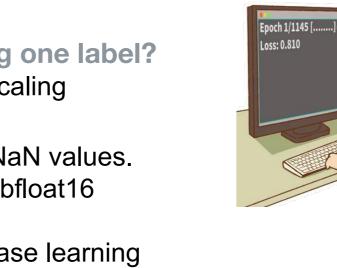
How to Design ML Models for New Data

- Look at the data first
- For simple, low dimensional data, start with simple models (SVM, Random Forest, Shallow MLP/CNN)
- For vision/language data, try pretrained model
- Start simple, then add complexity. Simple ones can be used as baselines.

How to Debug Your Model Look at the data first. Is the input data & label correct?

- Ensure no data leakage;
- Look at the outputs. Is model only predicting one label?
 - Label imbalance: Data Augmentation; loss scaling
- Look at the training loss
 - Loss is nan: Inspect weights and inputs for NaN values.
 Make sure weights are initialized. LLM: Use bfloat16 instead of float16.
 - Loss not changing: Model underfitting. Increase learning rate; decrease weight decay; Add more complexity; Use better optimizer*.

* Personal tip: I recommend trying second order optimizers from packages like Heavyball



How to Debug Your Model (Continued)

- Look at Loss (Continued)
 - Loss highly varied/increasing: Decrease learning rate;
 Gradient Clipping; Use better Optimizers
- Look at train vs val accuracy (or any other metrics)
 - Train >> Val: Model overfitting. More weight decay, reduce model complexity, data augmentation, get more data
 - Train ≈ Val ≈ 100%: Check for data leakage

