
MAS S60: PyTorch & Huggingface Tutorial

Before class: 
Register for an Huggingface & Wandb Account
Open Colabs below:
Pytorch: tinyurl.com/s60torch
Huggingface: tinyurl.com/s60huf
Optional: View Slides at s60.dd.works

http://tinyurl.com/s60torch
http://tinyurl.com/s60huf
http://s60.dd.works


Huggingface Tutorial

- “Huggingface” is a set of multiple packages
- transformers: Provides API to initialize large pretrained models
- datasets: Provides easy way to download datasets

- Not from Huggingface but often used together
- bitsandbytes: Provides functions to quantize large models
- flash-attn: Allows the model to run faster with less memory

- Some terms to keep in mind
- LoRA: Adapter to train large models with less memory
- Bfloat16: Robust half precision representation often used to save 

memory

2



How to AI (Almost) Anything
Debugging Checklist

Special thanks to Andrej Karpathy and Pierce Freeman

https://karpathy.github.io/2019/04/25/recipe/
https://freeman.vc/notes/debugging-tips-for-neural-network-training


Why?

4

• Neural nets can fail silently – unlike regular software bugs

• Requires a structured process to avoid hidden errors

• Goals: Build confidence in your setup and achieve reliable 
results

See Ali Rahimi’s Test of Time Blog

https://archives.argmin.net/2017/12/05/kitchen-sinks/


● Neural net training is a leaky abstraction

○ Not plug-and-play like typical software libraries

○ Complexity must be understood to avoid failure

● Neural net training fails silently

○ Logical errors, not syntactic ones

○ Networks can train but yield suboptimal results

5

Some Observations



● Become one with the Data

● Set up end-to-end skeleton and get dumb baselines

● Overfit to diagnose errors

● Regularize for better generalization

● Tune hyperparameters

● Squeeze out final improvements

6

The Recipe



● Spend hours reviewing data samples

● Check for duplicates, corrupt data, and label errors

● Identify patterns, biases, and potential preprocessing steps

● Write code to filter/sort and visualize distributions

7

Becoming one with the Data



● Start with a simple model (linear classifier or tiny ConvNet)

● Tips & Tricks

○ Fix random seeds for reproducibility

○ Simplify by disabling augmentation and complex features

○ Verify loss at initialization

○ Overfit on one batch to confirm correctness

8

Set up Skeleton + Baselines



● Use a simple model to overfit on a very small training set

● Debug if you cannot reach a low error rate

● Tips:

○ Visualize predictions and loss dynamics

○ Ensure gradients affect only expected inputs

○ Avoid premature optimization of architecture

9

Overfit 



● Add more real data – the best way to reduce overfitting

● Use data augmentation and pretraining

● Reduce input dimensions and model size

● Techniques: Dropout, weight decay, early stopping

10

Regularize for Generalization



● Prefer random search over grid search

● Use Bayesian optimization tools when available

● Don’t overcomplicate – start with simple models

11

Tune for Hyperparameters



● Use model ensembles for a 2% performance boost

● Leave models training longer than expected

● Explore state-of-the-art architectures and papers

12

Squeeze Out the Juice



● Follow a structured approach: Data → Baselines → Overfit → Regularize → 
Tune

● Be patient and meticulous

● Visualize everything, hypothesize, and validate

● Ready to achieve SOTA results

13

Conclusion



Massachusetts Institute of Technology

How to Design ML Models for New Data
- Look at the data first
- For simple, low dimensional data, start with simple 

models (SVM, Random Forest, Shallow MLP/CNN)
- For vision/language data, try pretrained model
- Start simple, then add complexity. Simple ones can be 

used as baselines.

14



Massachusetts Institute of Technology

How to Debug Your Model
- Look at the data first. Is the input data & label correct?

- Ensure no data leakage; 
- Look at the outputs. Is model only predicting one label?

- Label imbalance: Data Augmentation; loss scaling
- Look at the training loss

- Loss is nan: Inspect weights and inputs for NaN values. 
Make sure weights are initialized. LLM: Use bfloat16 
instead of float16. 

- Loss not changing: Model underfitting. Increase learning 
rate; decrease weight decay; Add more complexity; Use 
better optimizer*.

15

* Personal tip: I recommend trying second order optimizers from packages like Heavyball

https://github.com/ClashLuke/HeavyBall


Massachusetts Institute of Technology

How to Debug Your Model (Continued)
- Look at Loss (Continued)

- Loss highly varied/increasing: Decrease learning rate; 
Gradient Clipping; Use better Optimizers

- Look at train vs val accuracy (or any other 
metrics)

- Train >> Val: Model overfitting. More weight decay, 
reduce model complexity, data augmentation, get 
more data

- Train ≈ Val ≈ 100%: Check for data leakage

16


